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Complex behavior in one-dimensional sandpile models
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We give some examples to illustrate that scale invariance may not be a manifestation of complex behavior
in one-dimensional sandpile models. The multiscaling statistical properties and the existence of intrinsic length
scales observed in the local limited one-dimensional model reflects a certain level of complexity. The local,
limited, and limited to no traps model presents scale invariance due to the inhomogeneous way of perturbing
the lattice. It behaves, however, as the trivial one-dimensional version of the Bak, Tang, and Wisenfeld@Phys.
Rev. Lett.59, 381 ~1987!; Phys. Rev. A38, 364 ~1988!# model. A nonlocal limited model presents scaling
statistical properties and displays the same level of complexity as the nontrivial two-dimensional models.
@S1063-651X~97!02102-8#

PACS number~s!: 05.40.1j, 02.50.2r, 64.60.2i
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I. INTRODUCTION

Sandpile models have been used by Bak, Tang, and W
senfeld@1# to introduce the concept of self-organized cri
cality ~SOC!. Many systems out of equilibrium do not re
quire the tuning of an external parameter to be driven t
~self-organized! scale-invariant stationary state. It is gene
ally accepted@2–4# that SOC is produced by the interpla
between a very slow driving dynamics~sand is added to a
sandpile at a constant slow rate! and a short relaxation be
yond a certain threshold parameter~eventually, avalanches o
sand will begin!. In many investigations of extended dissip
tive dynamical systems, there is an identification betwe
SOC and the occurrence of some sort of scaling invarian

In the sandpile models ‘‘complexity’’ usually means th
existence of avalanches of all sizes@5,6#, regardless of the
way of implementing the rules of the dynamics. There
several studies of sandpile models characterized by a ‘‘c
plex behavior’’ associated with power laws and scaling
variance~SI!. An extended system has a ‘‘complex beha
ior’’ if it presents nontrivial dynamics out of simple
dynamical rules~the ‘‘degree of complexity’’ may be relate
to the ability of understanding these global dynamical pr
erties!. In this paper, we revisit some of the one-dimensio
sandpile models with the purpose of investigating the c
nections between SI and ‘‘complexity.’’ We show that
some cases the power laws observed in the statistical an
sis of these one-dimensional models are produced by
lanches of sizes which do depend on the way the syste
perturbed. In particular, we consider the mechanisms of
avalanches in a class of ‘‘limited’’ sandpile models intr
duced by Kadanoffet al. @7#.

To be more specific, we present a comparative analysi
four one-dimensional limited sandpile models:~i! The simple
one-dimensional version of the original model proposed
Bak, Tang, and Wiesenfeld@1# ~which we call the BTW1
model!; ~ii ! The local, limited ~LL ! model proposed by
Kadanoff and collaborators@7#; ~iii ! The nonlocal limited
~NLL ! model @7#; ~iv! The local limited and limited to no
traps~LLL ! model proposed by Chhabraet al. @8#. We pro-
pose a kind of ‘‘complexity hierarchy’’ in the context o
551063-651X/97/55~3!/2159~7!/$10.00
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these models. The BTW1 model displays just a trivial beh
ior. In the LL model, the presence of SI corresponds to
‘‘complex behavior,’’ but there are intrinsic length scales
addition to the size of the system. The LLL model prese
SI but, unlike the original two-dimensional BTW model,
does not exhibit any ‘‘complex behavior.’’ The NLL mode
is closer to the two-dimensional models. It does present c
plex behavior, which is not associated with any intrins
length scales.

This paper is organized as follows. In Sec. II, we revie
the dynamical rules that are used to define the limited o
dimensional models, and describe the basic ideas of the
tistical analysis. In Sec. III, we consider the behavior of the
models, and describe the mechanisms that are responsib
SI. In Sec. IV, we present some conclusions and raise a
questions about SOC, SI, and ‘‘complexity.’’

II. ONE-DIMENSIONAL LIMITED MODELS

Sandpile models on a lattice are continuously perturb
by the local addition of a certain number of ‘‘grains o
sand.’’ An integer variable~for instance, the height of the
sandpile! is associated with each site of the lattice. At a tim
t, the site to be perturbed may be chosen randomly or ma
determined beforehand. If the height of any site~or else the
slope, that is, the difference between the heights of two
jacent sites! exceeds an integer threshold value, a stabi
criterion is violated and an avalanche begins. Sand is t
redistributed to other sites, according to a variety of dyna
cal rules, obeying a local law of conservation. The grains
sand that are moved to other sites may turn them unst
and give rise to additional falls of sand. At the moment
heights~or slopes! are below or equal the critical thresho
values, this relaxation process stops, and the continuous
dition of sand is resumed. In those systems there are
well separated time scales, which are an essential chara
istic of SOC @3#. At the driven time scale, the system
perturbed; at the relaxation time scale, the avalanches oc
With at least one open boundary, sand will eventually fall
the system. A statistically stationary state is reached wh
on the average, the same number of grains is flowing i
2159 © 1997 The American Physical Society
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and out of the system, so that there is a global conserva
of sand.

We now describe the rules of the limited models. As
the work of Kadanoff and collaborators@7#, the analysis is
based on the distribution function of the number of dro
(d), that is, the number of grains that drop off the open ed
of the lattice, and the distribution function of the number
flips ( f ), that is, the total number of flipping events~which
gauges the avalanche size!. We call them drop and flip dis
tributions, respectively, and use a statistical procedure
smooth all data@9#.

Consider a one-dimensional lattice ofL sites, and an in-
teger height variablehk representing the number of grains
site k51, . . . ,L. At a time t, suppose thatnp grains are
added to a randomly chosen sitei ,

hi→hi1np . ~1!

In the one-dimensional models discussed in this paper,
stability criterion is based on the slope,Si5hi2hi21. If
Si.Sc , whereSc is a critical threshold, stability is violated
andnf( i ) grains of sand topple from sitei ,

hi→hi2nf~ i !. ~2!

In the limited models@7#, nf( i ) is a constant integer value
nf( i )5n. All the limited models that we consider have on
open and one closed boundary. So,h050, for the open
boundary, andhL115hL , for the closed ending.

In the local limited ~LL ! model, if site i becomes un-
stable,n grains of sand topple from sitei to the nearest-
neighbor sitei21. We have

hi→hi2n, ~3!

and

hi21→hi211n, ~4!

wheren is an integer. Once a site is perturbed, the criter
of stability is tested along the whole lattice. If it is violated
a site k, n grains topple fromk to the nearest neighbo
k21.

The BTW1 model is a particular case of the LL model f
np5n ~the number of grains added to a given site during
process of perturbation is the same as the number of gr
that topple from a site that becomes unstable!. This simple
rule is responsible for the well known trivial behavior of th
model. In the original LL model introduced by Kadanoff an
collaborators@7#, we takenp51 andn52. Fornp,n, ava-
lanches propagating towards the closed edge~which we call
backward avalanches! are the source of a nontrivial behavio
On the other hand, fornp5kn, wherek is an integer, com-
puter simulations indicate just a trivial behavior.

In the nonlocal limited model~NLL !, if the stability cri-
terion is violated,n grains of sand fall from sitei to sites
i2 j , with j51,2, . . . ,n. The dynamical rules are given by

hi→hi2n, ~5!

and

hi21→hi2111, . . . ,hi2n→hi2n11, ~6!
on
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wheren is an integer. This model was used by one of us
introduce the effects of inertia that should be relevant
sandpiles@10#.

It is convenient to express the relaxation rules in terms
a new variable,ek5Sk21. Suppose, for example, tha
np51, n52, andSc52. In this example,ek<1, ;k, for
both the LL and the NLL models. When the sitei is per-
turbed, there are two possibilities: ife i,1, there is a simple
addition of a grain of sand in this site (f50). However, if
e i51, an avalanche is triggered„fÞ0). The boundary con-
ditions are written ase15h121 andeL11521.

In the LL model there are special sites on the latt
which stop an avalanche process. They were named trap@8#
or troughs@11# in the literature. They are defined as the sit
wheree t,Sc2n. In the previous example, the traps are si
for which e t,0.

The local, limited, and limited to no traps~LLL ! model
@8# is a variation of the LL model where the perturbations
the sites which might give rise to a trap are forbidden. It
thus forbidden to perturb a sitek whereek5ek115Sc2n.
The result is a model with no traps. When an avalanche
triggered, it propagates until the open edge. If it eventua
propagates backwards, it goes towards the closed edge
flects there, and finally ends at the open edge, with grain
sand falling off the pile. In the previous example (np51,
n52, andSc52), the forbidden sites are associated w
ek5ek1150, the possible values ofek are 0 or 1, and we
redefine the closed boundary conditions,eL1151. Now,
suppose that a sitei is perturbed. If the stability criterion is
violated, the dynamical rules are given in Table I~with an
exception, at the closed boundary, as shown in Table!.
From Table I, we can also see that the LLL model cor
sponds to a diffusion-limited annihilation reactio
A1A→0, as pointed out by Krug@12#. The variablee i rep-
resents the presence (e i51) or absence (e i50) of a particle
A at site i . The situations described at the seco
@(e i ,e i11)5(0,1)→(1,0)# and the third lines
@(e i ,e i11)5(1,0)→(0,1)# of Table I correspond to the dif
fusive motion of particles, while the pairwise annihilation
described by the forth line@(e i ,e i11)5(1,1)→(0,0)#.

TABLE I. The dynamical rules of the LLL model (np51,
n52, andSc52).

e i11 e i Perturbation Drops Flips e i11 e i

0 0 forbidden - - 0 0
1 0 permitted 0 0 0 1
0 1 permitted 2 i 1 0
1 1 permitted 2(L2 i11) ( j5 i

L j 0 0

TABLE II. The dynamical rules of the siteL of the LLL model
(np51, n52, andSc52).

eL11 eL Perturbation Drops Flips eL11 eL

1 0 never forbidden 0 0 1 1
1 1 never forbidden 2 L 1 0
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FIG. 1. Statistical analysis of
the one-dimensional version of th
BTW model with np5n51,
L532, andSc51. ~a! Total num-
ber of grains on the lattice vs
time; ~b! Configuration of the sta-
tionary state;~c! Drop distribution
~ratio between the number o
events withd drops and the num-
ber of events with avalanches! in
the stationary state;~d! Flip distri-
bution ~ratio between the numbe
of events withf flips and the num-
ber of events with avalanches! in
the stationary state.
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III. AVALANCHE DYNAMICS OF THE LIMITED MODELS

A. The LL model

As we mentioned before, the BTW1 model is a particu
case of the LL model fornp5n. In terms of the variables
$ek%, the stationary state@see Fig. 1~a!# is a sequence of zero
@see Fig. 1~b!#. Every time a site is perturbed, an avalanche
triggered, and the associated number of drops is alw
d5n @see Fig. 1~c!#. The flip distribution reveals the homo
geneous character of the random perturbations@see Fig.
1~d!#. If site i is perturbed, there is only a correspondi
number f5 i of flips. As np5n, the behavior of the BTW1
model is trivial.
r

s
ys

For n.np , the LL model exhibits a complex behavio
that has been investigated by many authors@8,11,13,14#. It
has some important features:~i! The existence of backward
avalanches, that is, avalanches that propagate forwards
also backwards along the lattice. In the BTW1 model, th
are only forward avalanches;~ii ! The presence of traps, tha
is, the existence of sites that work as boundaries to limit
regions where the avalanches occur~even after the stationary
state is reached!. In the BTW1 model, as the traps exist on
in the transient regime, an avalanche in the stationary s
stops in the boundary only.

In the LL model, a backward avalanche is triggered
e i5e i1151 @see Fig. 2~a!#. For e i51 and e i11,1, only
at

s;
FIG. 2. Statistical analysis of
the LL model withnp51, n52,
and Sc52. ~a! An example of
configuration in which a backward
avalanche is triggered and stops
the traps;~b! Configuration of one
of the possible stationary state
~c! Drop distribution for different
lattice sizes;~d! Flip distribution
for different lattice sizes.



2162 55S. T. R. PINHO, C. P. C. PRADO, AND S. R. SALINAS
FIG. 3. Statistical analysis of
the LLL model with np51,
n52, andSc52. ~a! Drop distri-
bution for different lattice sizes;
~b! Flip distribution for different
lattice sizes;~c! Histogram of the
flip distribution for L532; ~d!
Histogram of the distribution of
perturbations by site forL532.
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forward avalanches are triggered. The possibility of ba
ward avalanches comes from the difference between
number of grains that perturb a sitei and the number of
grains that topple from sitek to site k21. For this reason
there are many possibilities of configurations that corresp
to statistically stationary states@for example, the configura
tion shown in Fig. 2~b!#. As the avalanches are limited by th
traps, on a finite lattice it is possible to know beforeha
which is the cluster of grains involved in that particular av
lanche@see Fig. 2~a!#. In this sense, we say that the tra
define the size of the avalanches.

A very simple model, called the ‘‘trough’’ or 01 mode
where a sitei is either occupied by a trap (t51) or empty
(t50) has been proposed by Carlsonet al. @11# to study the
relevance of traps in the behavior of one-dimensional sa
pile models. In this trough model, the configurations are
duced to the birth, death, and coalescence of traps. Dep
ing on the death and birth rates, the density of traps beh
as a power law with the lattice size. In the LL model, Kru
@13# identified three intrinsic length scales which depend
the size of the lattice:~i! the average distance between tra
-
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(l), ~ii ! the average size of edge events (dÞ0), and~iii ! the
average size of bulk events (d50). With periodic boundary
conditions, Chhabra and collaborators@8# obtained the power
laws of two intrinsic length scales,l'L1/3, and j'L2/3,
wherej is a coherence length.

The backward avalanches and the traps are responsibl
the nontrivial behavior of the LL model. The traps expla
the existence of intrinsic length scales other than the sys
size, and the backward avalanches give rise to flip numb
bigger than the lattice size. The analysis of the data, for b
drop and flip distributions@see Figs. 2~c! and 2~d!#, indicates
that a multiscaling fitting seems to give better results tha
simple finite-size scaling analysis@7#. Krug @13# has sug-
gested that this multiscaling behavior is related to the ex
ence of two different moments of the distribution ofl, which
scale differently with the lattice size.

In the LL model there is a complex behavior which ca
not be observed in the BTW1 model. However, we will s
that other one-dimensional models are associated with
even higher ‘‘degree of complexity.’’
TABLE III. Statistics of perturbations by site and flip distribution (L532 andd.2). Note that the
distribution of perturbations at sitei is the same as the flip distribution of the number of flips( j5 i

L j .

Site Distribution of perturbations Number of flips Flip distribution

1 0.000 002 3 63532131 0.039 295 3
2 0.000 006 8 93532131130 0.013 404 4
3 0.000 006 8 122532131130129 0.005 545 3
••• ••• ••• •••

••• ••• ••• •••

••• ••• ••• •••

29 0.005 545 3 5255321•••13 0.000 006 8
30 0.013 404 4 5275321•••12 0.000 006 8
31 0.039 295 3 5285321•••11 0.000 002 3
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FIG. 4. Statistical analysis of
the NLL model with np51,
n52, andSc52. ~a! Drop distri-
bution for different lattice sizes;
~b! Flip distribution for different
lattice sizes.
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B. The LLL model

Chhabra and collaborators@8# detected a power law in th
drop distribution of the LLL model. Besides simulating aga
this drop distribution@see Fig. 3~a!#, we performed some
simulations for the flip distribution, which is supposed
gauge the avalanche size more precisely. We have found
superposition of two distinct situations@see Fig. 3~b!#: ~i! For
f,L (d52), we reproduce the trivial behavior of the BTW
model, except forf'L, in which case the distribution o
flips increases because the siteL is never forbidden;~ii ! For
f.L (d.2), we observe a power law. However, instead
being associated with SOC, as claimed by some authors@15#,
this power law is a manifestation of the asymmetry of t
perturbation rule. It just reveals the inhomogeneity in t
way the system is perturbed, and cannot be associated w
complex behavior. We remark that the perturbation is forc
to be inhomogenous because the density of allowed pe
bation sites decays as 1/d with the distanced from the closed
boundary.
he

f

e
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d
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As shown in Figs. 3~c! and 3~d!, and in Table III, there is
an identification between the statistics of perturbations
d.2 and the distribution of flips. For each sitek, the ratio
between the number of perturbations and the number of a
lanches is exactly the same as the flip distribution associ
with the number of flipsf5L1(L21)1•••1k. These re-
sults indicate that the closed boundary, together with the
striction imposed in the way the system is perturbed, p
duces an inhomogeneous distribution of perturbations wh
is entirely responsible for the power law in the flip distrib
tion. This mechanism is rather simple: ford.2, as we can
observe in Tables I and II, there is an annihilation reacti
except ati5L. In a stationary state, the probability of
backward avalanche is bigger near the closed edge tha
the bulk of the lattice. As suggested by different investig
tions@8,12#, the boundary conditions play an essential role
this case. Also, to a certain extent, the behavior is simila
the case of the trivial BTW1 model, as the distribution
flips is directly related to the statistics of the perturbatio
d
e

e

s
l-
FIG. 5. Example of configura-
tion of the NLL model with
np51, n52, and Sc52, where
new branchings are formed an
the avalanche circumvents th
‘‘left trap.’’ The left trap, for the
first branching, is the sitel. i ,
with e l,0, where i is the per-
turbed site. The stages ii, iii, and
iv are intermediate steps of th
evolution. At stage~iii !, the new
branching at sitel21 is repon-
sible for avoiding the presumed
left trap. The intermediate step
are generated to allow the simu
taneous updating of all sitesk,
such thatSk.Sc .
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FIG. 6. Example of configura-
tion of the NLL model with
np51, n52, and Sc52, where
new branchings are formed an
the avalanche circumvents th
‘‘right trap.’’ The right trap, for
the first branching, is the site
r5 i2p, wherep is an even num-
ber, with e r,1. At stage~ii !, the
new branching originated at sit
r11 is responsible for avoiding
the presumed right trap. The inter
mediate steps are generated to
low the simultaneous updating o
all sitesk, such thatSk.Sc .
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and the avalanches do not stop before reaching the o
edge.

Due to the absence of traps, and the possibility of ba
ward avalanches, for each perturbed site of the LLL mod
there are only two possibilities for the distributions of dro
and flips. As shown in Table I, one possibility is associa
with forward avalanches (d52), while the other is related to
backward avalanches (d.2). The avalanche size can thus
determined univocally from the knowledge of the values
e i ande i11, wherei is the location of the perturbed site. Fo
each perturbed site, the numbers of drops and flips are d
mined, as in the trivial BTW1 model. We then conclude th
the scale invariance of the LLL model is produceda priori
by the way the model is defined. It is not reasonable to c
sider this behavior as complex, at least in the same sens
we refer to a complex behavior in the original tw
dimensional model introduced by Bak, Tang, and Wiesen
@1#. This is an example of a situation in which a power law
not a manifestation of a complex behavior.

C. The NLL model

The nonlocal limited~NLL ! model seems to be the firs
one-dimensional system to exhibit a complex behavior si
lar to the two-dimensional models. The simulations for t
NLL model show scale invariance in both the drop@see
Fig.4~a!# and the flip@see Fig.4~b!# distributions. The numbe
of drops assumes odd and even values due to the dynam
rules of the cellular automaton. As in the nontrivial tw
dimensional models, we observed simple scaling in
analysis of the flips,r( f ,L); f2d, for small f .

In our simple example (np51, n52, andSc52), with
e i51, an avalanche is triggered. Now it is not so easy
knowa priori where the avalanche stops and what cluster
grains move along the lattice@see Fig. 5~a! and Fig. 5~b!#.
The simple motion of grains can produce new branchi
~defined by the cluster of grains that move along the latti!
which enhance the avalanche sizes. A presumed trap to
en
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avalanche of the first branching can be transposed by ano
branching originated after the avalanche has been trigg
as we can see in stages~iii ! and~iv! of Fig. 5, and stages~ii !
and ~iii ! of Fig. 6!. Unlike in the case of the LL model, th
dynamics of this model presents avalanches generated
many branchings which are able to circumvent the ‘‘app
ent’’ traps. It is thus impossible to define the trapping sit
in the sense used before~sites which stop the avalanche!, in
terms of the values of the variables$ek% when the system is
perturbed. The consequence of this mechanism is the
hancement of the bigger avalanches and the absence o
trinsic length scales in addition to the lattice size. For a fin
lattice, it is not possible to define an average distance of tr
since, in general, we do not even characterize a trap. In o
words, the analysis of configurations of the lattice is n
sufficient to explain the complex behavior.

If we consider only one branching for each avalanche,
example the first, it is possible to define a trapping site. T
left trap ~see Fig. 5! is a sitel. i , with e l,0, and the right
trap ~see Fig. 6! is at siter5 i2p, wherep is an even num-
ber, with e r,1. Using this idea, we simulated a model fo
bidding the configurations which circumvent these traps. T
results reveal that this restriction is not sufficient to reco
the LL model. There is a certain number of bigger av
lanches that do not even exist in the LL model. This in
cates that the configuration of the lattice does not play
important role in the case of this model.

We have also simulated this model forbidding the co
figurations originated from the new branchings describ
above. The system evolves to a configuration whereek51,
for all sites, if any perturbation is forbidden~this is the sta-
tistically stationary state of the trivial BTW1 model wit
np5n52). We have another evidence that the branch
mechanisms are responsible for the nontrivial behavior of
NLL model.

The NLL model is thus more similar~than the LL model!
to the nontrivial two-dimensional models. At each motion
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55 2165COMPLEX BEHAVIOR IN ONE-DIMENSIONAL . . .
grains, at least two sites are independently perturbed as in
two-dimensional models. Also, the simple scaling obser
in the flip distribution is a manifestation of this similarity
This kind of behavior certainly corresponds to a higher ‘‘d
gree of complexity’’ than in the case of the LL model.

IV. CONCLUSIONS

The presence of scale invariance in one-dimensio
sandpile models does not necessarily imply a complex
havior. To exhibit SOC, at least in the sense originally p
posed by Bak, Tang, and Wiesenfeld, it is required that
existence of branching mechanisms that provide the poss
ity of an occurrence of avalanches of all sizes, as in the N
model. It is even possible to distinguish two levels of co
plexity, for the LL and NLL models. Considering a finit
lattice, the LL model presents intrinsic length scales rela
to the density of traps on the lattice. In the NLL model, the
are no extra length scales, even on a finite lattice, due to
appearance of new branchings during the relaxation pro
~which leads to the recovery of the simple scaling behav
observed in the two-dimensional models!.
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In conclusion, we have raised some questions about
connections between SOC, SI, and complexity. The prese
of power laws in the statistical analysis of the systems t
we have considered should not be taken as a synonymou
complex behavior. Also, it should be pointed that scali
invariance can be a manifestation of different types of
havior, including some rather trivial situations, as in the LL
model, where the boundary conditions play a determin
role.

Finally, we wish to emphasize the coincidence betwee
more complex behavior, as in the NLL and the tw
dimensional BTW models, and the existence of a sim
scaling law. Although we have not investigated this point
detail, we suggest that the character of the scaling could
used to distinghish the degrees of complexity of systems
the LL and the NLL models.
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