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Complex behavior in one-dimensional sandpile models
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We give some examples to illustrate that scale invariance may not be a manifestation of complex behavior
in one-dimensional sandpile models. The multiscaling statistical properties and the existence of intrinsic length
scales observed in the local limited one-dimensional model reflects a certain level of complexity. The local,
limited, and limited to no traps model presents scale invariance due to the inhomogeneous way of perturbing
the lattice. It behaves, however, as the trivial one-dimensional version of the Bak, Tang, and Wideimjsld
Rev. Lett.59, 381(1987; Phys. Rev. A38, 364 (1988] model. A nonlocal limited model presents scaling
statistical properties and displays the same level of complexity as the nontrivial two-dimensional models.
[S1063-651%97)02102-9

PACS numbeps): 05.40+j, 02.50—r, 64.60—i

I. INTRODUCTION these models. The BTW1 model displays just a trivial behav-
ior. In the LL model, the presence of Sl corresponds to a
Sandpile models have been used by Bak, Tang, and Wig-complex behavior,” but there are intrinsic length scales in
senfeld[1] to introduce the concept of self-organized criti- addition to the size of the system. The LLL model presents
cality (SOQ. Many systems out of equilibrium do not re- Sl but, unlike the original two-dimensional BTW model, it
quire the tuning of an external parameter to be driven to &loes not exhibit any “complex behavior.” The NLL model
(self-organizeyl scale-invariant stationary state. It is gener-is closer to the two-dimensional models. It does present com-
ally accepted2—-4] that SOC is produced by the interplay Plex behavior, which is not associated with any intrinsic
between a very slow driving dynami¢sand is added to a length scales.
sandpile at a constant slow ratnd a short relaxation be-  This paper is organized as follows. In Sec. II, we review
yond a certain threshold parameteventually, avalanches of the dynamical rules that are used to define the limited one-
sand will begin. In many investigations of extended dissipa- dimensional models, and describe the basic ideas of the sta-
tive dynamical systems, there is an identification betweefistical analysis. In Sec. Ill, we consider the behavior of these
SOC and the occurrence of some sort of scaling invariancenodels, and describe the mechanisms that are responsible for
In the sandpile models “complexity” usually means the SI. In Sec. IV, we present some conclusions and raise a few
existence of avalanches of all sizg56], regardless of the questions about SOC, SI, and “complexity.”
way of implementing the rules of the dynamics. There are
several stu(_:lies of sandpile m_odels characterized by a “cpm— Il. ONE-DIMENSIONAL LIMITED MODELS
plex behavior” associated with power laws and scaling in-
variance(Sl). An extended system has a “complex behav- Sandpile models on a lattice are continuously perturbed
ior” if it presents nontrivial dynamics out of simple by the local addition of a certain number of “grains of
dynamical rulegthe “degree of complexity” may be related sand.” An integer variabldfor instance, the height of the
to the ability of understanding these global dynamical prop-sandpil¢ is associated with each site of the lattice. At a time
ertie. In this paper, we revisit some of the one-dimensional, the site to be perturbed may be chosen randomly or may be
sandpile models with the purpose of investigating the condetermined beforehand. If the height of any gite else the
nections between S| and “complexity.” We show that in slope, that is, the difference between the heights of two ad-
some cases the power laws observed in the statistical analjgcent sites exceeds an integer threshold value, a stability
sis of these one-dimensional models are produced by avaftiterion is violated and an avalanche begins. Sand is then
lanches of sizes which do depend on the way the system imdistributed to other sites, according to a variety of dynami-
perturbed. In particular, we consider the mechanisms of theal rules, obeying a local law of conservation. The grains of
avalanches in a class of “limited” sandpile models intro- sand that are moved to other sites may turn them unstable
duced by Kadanofét al. [7]. and give rise to additional falls of sand. At the moment all
To be more specific, we present a comparative analysis dfeights(or slope$ are below or equal the critical threshold
four one-dimensional limited sandpile mod€ig:The simple  values, this relaxation process stops, and the continuous ad-
one-dimensional version of the original model proposed bydition of sand is resumed. In those systems there are two
Bak, Tang, and Wiesenfeldl] (which we call the BTW1 well separated time scales, which are an essential character-
mode); (i) The local, limited (LL) model proposed by istic of SOC[3]. At the driven time scale, the system is
Kadanoff and collaboratorg7]; (iii) The nonlocal limited perturbed; at the relaxation time scale, the avalanches occur.
(NLL) model[7]; (iv) The local limited and limited to no With at least one open boundary, sand will eventually fall off
traps(LLL ) model proposed by Chhabai al. [8]. We pro-  the system. A statistically stationary state is reached when,
pose a kind of “complexity hierarchy” in the context of on the average, the same number of grains is flowing into
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and out of the system, so that there is a global conservation TABLE I. The dynamical rules of the LLL modelng=1,

of sand. n=2, andS;=2).
We now describe the rules of the limited models. As in : :
the work of Kadanoff and collaboratofg], the analysis is €+1 €  Perturbation Drops Flips €+1 €

based on the distribution function of the number of drop

0 forbidd - - 0 0
(d), that is, the number of grains that drop off the open edgel 0 ;;rrlmnzz 0 0 0 1
of the lattice, and the distribution function of the number of 1 ermitted 5 i 1 0
flips (f), that is, the total number of flipping evengwhich 1 Sermitted A—i+1) b ] 0 0
j=i

gauges the avalanche sjz&Ve call them drop and flip dis-
tributions, respectively, and use a statistical procedure to
smooth all dat49].

Consider a one-dimensional lattice bfsites, and an in- Wheren is an integer. This model was used by one of us to
teger height variable, representing the number of grains at introduce the effects of inertia that should be relevant in
site k=1,... L. At a timet, suppose thah, grains are ~sandpileq10].

added to a randomly chosen site It is convenient to express the relaxation rules in terms of
a new variable,e,=S.—1. Suppose, for example, that
hi—hi+n,. (1 n,=1, n=2, andS,=2. In this example <1, Vk, for

. . : . . both the LL and the NLL models. When the sitds per-
In the one-dimensional models discussed in this paper, the Lo ; !

. o _ turbed, there are two possibilities: éf<1, there is a simple
stability criterion is based on the slop&=h;—h;_;. If

S>S., whereS; is a critical threshold, stability is violated addition of a grain Of_ Saf‘d in this sitd £0). However, if
andn,(i) grains of sand topple from siie €= 1,an ava!anche is triggerdd+ 0). The boundary con-
ditions are written ag,;=h;—1 ande ,,;=—1.
hi—h;—ng(i). 2 In the LL model there are special sites on the lattice
which stop an avalanche process. They were named [t8ps
In the limited modeld7], n¢(i) is a constant integer value, or troughg[11] in the literature. They are defined as the sites
n¢(i)=n. All the limited models that we consider have one wheree,<S.—n. In the previous example, the traps are sites
open and one closed boundary. Su=0, for the open for which ¢,<O0.
boundary, andh,_,;=h, , for the closed ending. The local, limited, and limited to no trap&LL) model
In the local limited (LL) model, if sitei becomes un- [g]is a variation of the LL model where the perturbations at
stable,n grains of sand topple from site to the nearest- e sjtes which might give rise to a trap are forbidden. It is
neighbor sité —1. We have thus forbidden to perturb a site where e,= €, ;= S;—n.

o The result is a model with no traps. When an avalanche is
hi—h;—n, 3 ) . . .
triggered, it propagates until the open edge. If it eventually
and propagates backwards, it goes towards the closed edge, re-
flects there, and finally ends at the open edge, with grains of
hi—1—hj_1+n, (4)  sand falling off the pile. In the previous example,E1,

. . L .. n=2, andS.=2), the forbidden sites are associated with
wheren is an integer. Once a site is perturbed, the criterion

= =0, the possible values af are 0 or 1, and we

of stability is tested along the whole lattice. If it is violated at reekde?;:é the closped boundary conkditiomi =1. Now

. . . —+17 - 1
E_Sllte K, n grains topple fromk to the nearest neighbor suppose that a siteis perturbed. If the stability criterion is

THe BTW1 model is a particular case of the LL model forViOIate(.j’ the dynamical rules are given in Tablé_v\]ith an
n,=n (the number of grains added to a given site during th except_:_ortn),l atl the closedl boundatrﬁ/,tati Srl]_(l)_vl\_m delable .
process of perturbation is the same as the number of grai gom Table |, we can also see tat the LLL model corre-
that topple from a site that becomes unstablis simple sponds to a diffusion-limited anmhllatlpn reaction,
rule is responsible for the well known trivial behavior of this ATA—0, as pointed out by Krupl2]. The variablee; rep-
model. In the original LL model introduced by Kadanoff and "esents the presence; 1) or absence¢=0) of a particle
collaboratorg 7], we taken,=1 andn=2. Forn,<n, ava- A at site i. The situations described at the s_econd
lanches propagating towards the closed egigtich we call ~ [(€i.€+1)=(0.1)—(1,0] and the  third lines
backward avalanchgare the source of a nontrivial behavior. [(€;,€+1)=(1,0)—(0,1)] of Table | correspond to the dif-
On the other hand, fon,=kn, wherek is an integer, com- fusive motion of particles, while the pairwise annihilation is

puter simulations indicate just a trivial behavior. described by the forth linf(e; , € 1) =(1,1)—(0,0)].
In the nonlocal limited mode(NLL), if the stability cri-
terion is violated,n grains of sand fall from sité to sites TABLE II. The dynamical rules of the site of the LLL model
i—j,with j=1,2,...,n. The dynamical rules are given by (n,=1,n=2, andS,=2).
hi—h;—n, 5 €L+1 € Perturbation Drops Flips € .+1 €
and 1 0  never forbidden 0 0 1 1
1 1 never forbidden 2 L 1 0

hi,1—>hi,1+1,...,hi,n—>hi,n+l, (6)
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IIl. AVALANCHE DYNAMICS OF THE LIMITED MODELS

For n>n,, the LL model exhibits a complex behavior
that has been investigated by many auth@&4d1,13,14. It
. _ . has some important featurg$) The existence of backward
As we mentioned before, the BTW1 model is a particulargyajanches, that is, avalanches that propagate forwards and
case of the LL model fon,=n. In terms of the variables also backwards along the lattice. In the BTW1 model, there
{ed}, the stationary stafesee Fig. 1a)] is a sequence of zeros are only forward avalanchesij) The presence of traps, that
[see Fig. W)]. Every time a site is perturbed, an avalanche isis, the existence of sites that work as boundaries to limit the
triggered, and the associated number of drops is alwaysegions where the avalanches oc@wen after the stationary
d=n [see Fig. 1c)]. The flip distribution reveals the homo- state is reachgdln the BTW1 model, as the traps exist only
geneous character of the random perturbatifgee Fig. in the transient regime, an avalanche in the stationary state
1(d)]. If site i is perturbed, there is only a correspondingstops in the boundary only.
numberf=i of flips. Asn,=n, the behavior of the BTW1 In the LL model, a backward avalanche is triggered for

A. The LL model

model is trivial.

€=¢€,1=1 [see Fig. 23)]. For ¢=1 and ¢ ,<1, only
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forward avalanches are triggered. The possibility of back{\), (ii) the average size of edge events{0), and(iii) the
ward avalanches comes from the difference between thaverage size of bulk eventsl€0). With periodic boundary
number of grains that perturb a siteand the number of conditions, Chhabra and collaboratfg$ obtained the power
grains that topple from sit& to sitek—1. For this reason, |aws of two intrinsic length scales\~L3 and ¢~L2%"
there are many possibilities of configurations that corresponghere ¢ is a coherence length.
to statistically stationary staté¢for example, the configura-  The packward avalanches and the traps are responsible for
tion shown in Fig. b)]. As the avalanches are limited by the the nonrivial behavior of the LL model. The traps explain
traps, on a finite lattice it is possible to know beforehandine existence of intrinsic length scales other than the system
which Is the c_Iuster of grains involved in that particular ava-gjze, and the backward avalanches give rise to flip numbers
?;?r?:gﬁzesisgb ]??z]]é g]v;?;csheensse, we say that the traps bigger than the lattice size. The analysis of the data, for both

A very simple model, called thé “trough” or 01 model drop and fIi_p dis_tribgtipnﬁsee Figs. Q:.) and 2d)], indicates
where a sitd is either o’ccupied by a traprE 1) or empty ' that a m_ulltlsca}llng flttnjg seems to give better results than a
(7=0) has been proposed by Carlseral. [11] to study the simple finite-size scaling analys[§]. Krug [13] has sug-

. 0gested that this multiscaling behavior is related to the exist-

relevance of traps in the behavior of one-dimensional san ¢ it f the distributi fwhich
pile models. In this trough model, the configurations are re€NC€ of two different moments of the distribution\gfwhic

duced to the birth, death, and coalescence of traps. Depengcal€ differently with the lattice size.

ing on the death and birth rates, the density of traps behave !N the LL model there is a complex behavior which can-

[13] identified three intrinsic length scales which depend orthat other one-dimensional models are associated with an
the size of the lattice(i) the average distance between trapseven higher “degree of complexity.”

TABLE Ill. Statistics of perturbations by site and flip distributioh €32 andd>2). Note that the
distribution of perturbations at siieis the same as the flip distribution of the number of flfqgij.

Site Distribution of perturbations Number of flips Flip distribution
1 0.000 002 3 6332+31 0.0392953
2 0.000 006 8 93 32+31+30 0.013404 4
3 0.000 006 8 122 32+ 31+ 30+ 29 0.0055453
29 0.005545 3 52532+...+3 0.000 006 8
30 0.013404 4 52#32+ ... +2 0.000 006 8

31 0.0392953 52832+..-+1 0.000 002 3
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B. The LLL model As shown in Figs. &) and 3d), and in Table Ill, there is
an identification between the statistics of perturbations for

Chhabra and collaborato}8] detected a power law in the 1OEEE ) )
d>2 and the distribution of flips. For each ske the ratio

drop distribution of the LLL model. Besides simulating again :
this drop distribution[see Fig. 8)], we performed some between the number of perturbations and the number of ava-

simulations for the flip distribution, which is supposed to lanches is exactly the same as the flip distribution associated

gauge the avalanche size more precisely. We have found tdth the number of flipsf=L+(L—1)+ - +k. These re-
superposition of two distinct situatiofisee Fig. 8)]: (i) For sults indicate that the closed boundary, together with the re-

f<L (d=2), we reproduce the trivial behavior of the BTW?1 Striction imposed in the way the system is perturbed, pro-
model, except forf~L, in which case the distribution of duces an inhomogeneous distribution of perturbations which
flips increases because the dités never forbidden(ii) For IS entirely responsible for the power law in the flip distribu-
f>L (d>2), we observe a power law. However, instead oftion. This mechanism is rather simple: fdr2, as we can
being associated with SOC, as claimed by some aufiéls  observe in Tables | and Il, there is an annihilation reaction,
this power law is a manifestation of the asymmetry of theexcept ati=L. In a stationary state, the probability of a
perturbation rule. It just reveals the inhomogeneity in thebackward avalanche is bigger near the closed edge than in
way the system is perturbed, and cannot be associated withthe bulk of the lattice. As suggested by different investiga-
complex behavior. We remark that the perturbation is forcedions[8,12], the boundary conditions play an essential role in
to be inhomogenous because the density of allowed pertuthis case. Also, to a certain extent, the behavior is similar to
bation sites decays asdlwith the distancal from the closed the case of the trivial BTW1 model, as the distribution of
boundary. flips is directly related to the statistics of the perturbations,

1 5 ¥ T T T T T
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g

10 - = -

15 T T T T
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FIG. 5. Example of configura-
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the avalanche circumvents the
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branching at sited —1 is repon-
sible for avoiding the presumed
left trap. The intermediate steps
are generated to allow the simul-
taneous updating of all sitek,
such thatS,>S; .
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and the avalanches do not stop before reaching the opeavalanche of the first branching can be transposed by another
edge. branching originated after the avalanche has been triggered
Due to the absence of traps, and the possibility of backas we can see in stagéi) and(iv) of Fig. 5, and stage§i)
ward avalanches, for each perturbed site of the LLL modeland iii) of Fig. 6). Unlike in the case of the LL model, the
there are only two possibilities for the distributions of dropsdynamics of this model presents avalanches generated by
and flips. As shown in Table I, one possibility is associatedmany branchings which are able to circumvent the “appar-
with forward avalanchesi(=2), while the other is related t0  ent” traps. It is thus impossible to define the trapping sites,
backward avalanchesl-2). The avalanche size can thus be j, the sense used befofsites which stop the avalandhén

determined univocally from the knowledge of the values ofiarms of the values of the variablés,} when the system is

€ ande; , 1, Wherei is the location of the perturbed site. For perturbed. The consequence of this mechanism is the en-

egch pertu.rbed Sit.&. the numbers of drops and flips are detqz \coment of the bigger avalanches and the absence of in-
mined, as in the trivial BTW1 model. We then conclude thattrinsic length scales in addition to the lattice size. For a finite

the scale invariance of the LLL model is producagbriori o : , )
. . ) lattice, it is not possible to define an average distance of traps
by the way the model is defined. It is not reasonable to con-

sider this behavior as complex, at least in the same sense adice. n general, we do not even c_haracterlze a trgp. I'n other
we refer to a complex behavior in the original two- words, the analysis of configurations of the lattice is not

dimensional model introduced by Bak, Tang, and Wiesenfel&ufﬁcIent to gxplaln the complex l_Jehawor.

[1]. This is an example of a situation in which a power law is It we consu_:ler qn[y one pranchlng _for each av_alanc_:he, for

not a manifestation of a complex behavior. example the fII'.St, |t'|s po§3|ble. to Qeflne a trapping sﬁe. The
left trap (see Fig. % is a sitel >i, with <0, and the right

trap (see Fig. §is at siter =i —p, wherep is an even num-

ber, with €, <1. Using this idea, we simulated a model for-

The nonlocal limited(NLL) model seems to be the first bidding the configurations which circumvent these traps. The
one-dimensional system to exhibit a complex behavior simiresults reveal that this restriction is not sufficient to recover
lar to the two-dimensional models. The simulations for thethe LL model. There is a certain number of bigger ava-
NLL model show scale invariance in both the drigee lanches that do not even exist in the LL model. This indi-
Fig.4(a)] and the flipfsee Fig.4b)] distributions. The number cates that the configuration of the lattice does not play an
of drops assumes odd and even values due to the dynamidahportant role in the case of this model.
rules of the cellular automaton. As in the nontrivial two- We have also simulated this model forbidding the con-
dimensional models, we observed simple scaling in thdigurations originated from the new branchings described
analysis of the flipsp(f,L)~f "¢, for smallf. above. The system evolves to a configuration whegrel,

In our simple exampler,=1, n=2, andS;=2), with  for all sites, if any perturbation is forbiddefthis is the sta-
¢,=1, an avalanche is triggered. Now it is not so easy tdistically stationary state of the trivial BTW1 model with
know a priori where the avalanche stops and what clusters oh,=n=2). We have another evidence that the branching
grains move along the lattidsee Fig. $a) and Fig. §b)].  mechanisms are responsible for the nontrivial behavior of the
The simple motion of grains can produce new branchingNLL model.

(defined by the cluster of grains that move along the Iattice The NLL model is thus more simildthan the LL model
which enhance the avalanche sizes. A presumed trap to the the nontrivial two-dimensional models. At each motion of

C. The NLL model
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grains, at least two sites are independently perturbed as in the In conclusion, we have raised some questions about the
two-dimensional models. Also, the simple scaling observedonnections between SOC, SlI, and complexity. The presence
in the flip distribution is a manifestation of this similarity. of power laws in the statistical analysis of the systems that

This kind of behavior certainly corresponds to a higher “de-we have considered should not be taken as a synonymous of

gree of complexity” than in the case of the LL model. complex behavior. Also, it should be pointed that scaling
invariance can be a manifestation of different types of be-
IV. CONCLUSIONS havior, including some rather trivial situations, as in the LLL

) ) _ ) ~ model, where the boundary conditions play a determinant
The presence of scale invariance in one-dimensionglye.

sandpile models does not necessarily imply a complex be-  Finally, we wish to emphasize the coincidence between a
havior. To exhibit SOC, at least in the sense originally pro-mgre complex behavior, as in the NLL and the two-
posed by Bak, Tang, and Wiesenfeld, it is required that thgjimensional BTW models, and the existence of a simple
existence of branching mechanisms that provide the possibikca|ing law. Although we have not investigated this point in
ity of an occurrence of avalanches of all sizes, as in the NLLgetajl, we suggest that the character of the scaling could be

model. Itis even possible to distinguish two levels of com-yseq to distinghish the degrees of complexity of systems as
plexity, for the LL and NLL models. Considering a finité the L and the NLL models.

lattice, the LL model presents intrinsic length scales related
to the density of traps on the lattice. In the NLL model, there

are no extra length scales, even on a finite lattice, due to the
appearance of new branchings during the relaxation process We thank M. J. Oliveira and J. Krug for useful conversa-
(which leads to the recovery of the simple scaling behaviotions. S. P. acknowledges the financial support of the Brazil-
observed in the two-dimensional models ian agency CAPES/PICD.
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